You ask your little cousin to move a 1 kg box up a hill with a coefficient of kinetic friction $\mu_k = 0.2$. Rather than carrying the box, he overthinks things and drags the box up the hill with a rope. Determine the average power exerted by your little cousin if he applies a force F = 10 N and he drags the box up the hill d = 3 m with an incline of $\theta = 30 \ degrees$.

(1) =0 F-
$$\mu$$
kN- μ ysin0 = μ J

$$\frac{1}{2} = \frac{F - \mu_{k} N - \mu_{y} \sin \theta}{m} = \frac{10N - (0.2)(8.496N) - (16)(9.21 \mu_{y} + 2) \sin 30^{3}}{(16)}$$

$$\frac{1}{2} = \frac{3.396 \mu_{y}^{2}}{m} = \frac{10N - (0.2)(8.496N) - (16)(9.21 \mu_{y} + 2) \sin 30^{3}}{(16)}$$

$$\frac{1}{2} = \frac{3.396 \mu_{y}^{2}}{m} = \frac{1}{2} \cdot \frac$$

$$\Delta S = 1/3t^{2} + \frac{1}{2} \cdot 3t^{2} = 0 + \frac{1}{2}(3.396 \text{ m/s}) t^{2}$$

$$Lo t = 1.32.9 \text{ see}$$

$$P = FV - 0$$
 $\Delta P = F\Delta V = (10 N)(2.257 Mg) = 12.57 W$

$$P = 22.57 W$$

Alternatively:
$$P = \frac{W}{\Delta t}$$
 $W = Fd = (10N)(3n) = 30J$

$$P = \frac{30J}{1.227 \times e} = \frac{22.57W}{1.227 \times e} \text{ (matches !)}$$