Question 2

A magnetic launch system exerts the force function shown below over its 80 cm launch path. Assuming an 80% efficiency, what is the electrical energy we expect to have to put into the system to generate this force function?

$$
\begin{aligned}
& \eta=\frac{W_{\text {out }}}{W_{\text {in }}} \quad W_{\text {out }}=\int F(d) \\
& F(d)=-250 d+600 \\
& W_{\text {out }}=\int_{0}^{8 m}-250 d+600=\left.\left(-\frac{250}{2} d^{2}+600 d\right)\right|_{0} ^{8} \\
& W_{\text {out }}=400 N_{\text {m }} \\
& n=.8=\frac{W_{\text {out }}}{W_{\text {in }}} \rightarrow W_{\text {in }}=500 \mathrm{Nm}_{\text {m }}=500 \mathrm{~J}
\end{aligned}
$$

