Several arms are linked to form the system shown. Link AB has a length of $l_{AB}=0.5m$, link CD has a length of $l_{CD}=0.5m$, and the distance from B to C is $r_{C/B}=-1\hat{i}+1\hat{j}m$. If the angle between link AB is $\theta=45~deg$, determine the angular velocity of link CD. Locate the ICZV. The angular velocities of the links are given as $\omega_{AB}=-3~rad/s$ and $\omega_{BC}=3/4\sqrt{2}~rad/s$.

1 Diagian

$$\vec{V}_{B} = \vec{W}_{AB} \times \vec{\Gamma}_{B/A} = -3\hat{\kappa} \times (-0.5\cos 45\hat{\gamma} - 0.5\sin 45\hat{\gamma})$$

$$\vec{V}_{B} = 1.5 (\cos 45\hat{\gamma} - \sin 45\hat{\gamma})$$

$$\vec{V}_{C} = \vec{W}_{CD} \times \vec{\Gamma}_{C/B} = W_{CD} \hat{\kappa} \times (-0.5\hat{\gamma}) = 0.5 \text{ Web} \hat{\gamma}$$

$$\vec{V}_{C} = \vec{W}_{DC} \times \vec{\Gamma}_{C/BC} = D \quad 0.5 \text{ Web} \hat{\gamma} = \frac{3\sqrt{24}}{4} \hat{\kappa} \times \vec{\Gamma}_{C/BC}$$

$$\vec{V}_{B} = \vec{W}_{BC} \times \vec{\Gamma}_{B/BC}$$

1.5 (
$$\omega_{4}$$
 45° \hat{j} - \sin_{4} 45° \hat{i}) = $\frac{3\sqrt{2}}{4}$ \hat{k} × ($f_{0/IL}$ ω_{3} 45° \hat{i} + $f_{0/IL}$ \sin_{4} 45° \hat{j})

 \hat{i} : -1.5 \sin_{4} 45° = $-\frac{3\sqrt{2}}{4}$ $f_{0/IL}$ \sin_{4} 45° \approx_{5} \log_{IL} = $\sqrt{2}$
 \hat{j} : 1.5 ω_{5} 45° = $\frac{3\sqrt{2}}{4}$ $f_{0/IL}$ ω_{3} 45° \approx_{5} \approx_{5} \log_{IL} = $\sqrt{2}$

$$\vec{IC} = \vec{\Gamma}_{IC/B} + \vec{\Gamma}_{B/A} = -\vec{\Gamma}_{0/A} + \vec{\Gamma}_{0/A} = -\left(\frac{4+\sqrt{2}}{4}\right)\hat{i} - \left(\frac{4+\sqrt{2}}{4}\right)\hat{i}$$

$$\vec{IC} = -\left(\frac{4+\sqrt{2}}{4}\right)\hat{i} - \left(\frac{4+\sqrt{2}}{4}\right)\hat{j}$$