Boat A is travelling forward (in positive y) with a velocity of $25 \mathrm{~m} / \mathrm{s}$ and an acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. The person in dingy B is travelling in a circle (as they only have one oar). They have a forward (in positive y) velocity of 5 m / s and acceleration of $-1 \mathrm{~m} / \mathrm{s}^{2}$ (as they have lost focus while watching boat A). The radius of dingy B's path is $r=20 \mathrm{~m}$, and the distance between the vessels is $d=10 \mathrm{~m}$.

Find the velocity and acceleration of boat A as seen by the occupants of dingy B.

$$
\begin{aligned}
& \vec{v}_{A,} \vec{a}_{A} \vec{a}_{B_{B}} \mid \vec{v}_{B} \vec{v}_{B} \\
& \vec{V}_{A}=\vec{V}_{B}+\vec{\Omega} \times \vec{r}_{A / B}+\left(\vec{V}_{A / B}\right)_{\text {rel }} \\
& \left(\vec{V}_{A B B}\right)_{r-1}=\vec{V}_{A}-\vec{V}_{B}-\vec{\Omega} \times \vec{r}_{A / B}<d \\
& =25 \mathrm{~m} / \mathrm{s} \hat{\jmath}-5 \mathrm{~m} / \mathrm{s} \hat{\jmath}-\left(-0.25 \mathrm{rad} / \mathrm{s}^{\hat{k}}\right) \\
& x(-10 \mathrm{~m} \hat{u}) \\
& =20 \mathrm{~m} / \mathrm{s} \hat{\jmath}-2.5 \mathrm{~m} / \mathrm{s} \hat{\jmath} \\
& \left(\vec{v}_{A / B}\right)_{\text {rel }}=17.5 \mathrm{~m} / \mathrm{s} \hat{\jmath}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find }\left(\vec{v}_{A / B}\right)_{v e l}\left\{\left(\vec{a}_{A / B}\right)_{r e l}\right. \\
& \vec{v}_{B}=\vec{\psi}_{0}^{0}+\vec{\omega}_{B} \times \vec{r}_{B / O} \\
& v_{B} \hat{\jmath}=-\omega_{B} \hat{k} \times r(-\hat{\imath}) \\
& v_{B} \hat{X}=\overline{\omega_{B}} r \hat{X} \\
& \omega_{B}=\frac{v_{B}}{r}=0.25 \mathrm{rad} / \mathrm{s} \\
& \vec{\omega}_{B}=-0.25 \mathrm{rad} / \mathrm{s} \hat{k}=\vec{\Omega} \\
& \vec{a}_{B_{t}}=\vec{\alpha}_{B} \times \vec{r}_{B / O} \\
& -a_{B t} \hat{\jmath}=\alpha_{B} \hat{k} \times(-r \hat{\imath}) \\
& f a_{B t} y=f \alpha_{B} r y \\
& \alpha_{B}=\frac{a_{B t}}{r}=0.05 \mathrm{rad} / \mathrm{s}^{2} . \\
& \vec{\alpha}_{B}=0.05 \mathrm{rad} / \mathrm{s}^{2} \hat{k}=\frac{\dot{\Omega}}{\vec{\Omega}}
\end{aligned}
$$

$$
\begin{gathered}
\vec{a}_{A}=\vec{a}_{B}+\dot{\vec{\Omega}} \times \vec{r}_{A / B}-\Omega^{2} \vec{r}_{A / A}+2 \vec{\Omega} \times(\vec{v} A / B)_{r e l}+\left(\vec{a}_{A / B}\right)_{r=1} \\
\vec{a}_{B}=\vec{a}_{B t}+\vec{a}_{B n}=-1 \mathrm{~m} / \mathrm{s}^{2} \hat{\jmath}+\omega_{B}^{2} r \hat{\imath} \\
\vec{a}_{B} \\
4 \mathrm{~m} / \mathrm{s}^{2} \hat{\jmath}= \\
-1 \mathrm{~m} / \mathrm{s}^{2} \hat{\jmath}+(0.25 \mathrm{rod} / \mathrm{s})^{2}(20 \mathrm{~m} \hat{\imath})+\left(0.05 \mathrm{rad} / \mathrm{s}^{2} \hat{k}\right) \times(-10 \mathrm{~m} \hat{\imath}) \\
\\
-(0.25 \mathrm{rad} / \mathrm{s})^{2}(-10 \mathrm{~m} \hat{l})+2(-0.25 \mathrm{rad} / 6 \hat{k}) \times(17.5 \mathrm{~m} / \mathrm{s} \hat{\jmath}) \\
+\left(\vec{a}_{A / B}\right) \mathrm{rel}
\end{gathered}
$$

$$
\begin{aligned}
& 4 \hat{\jmath}=-1 \hat{\jmath}+1.25 \hat{\imath}-0.5 \hat{\jmath}+0.625 \hat{\imath}+8.75 \hat{\imath}+\left(\vec{a}_{A / B}\right)_{\mathrm{nel}} \\
& 4 \hat{\jmath}=-1.5 \hat{\jmath}+10.625 \hat{\imath}+\left(\vec{a}_{A B B}\right)_{\mathrm{rd}} \\
& \Rightarrow\left(\vec{a}_{A / B}\right)_{\mathrm{rel}}=-10.625 \hat{\imath}+5.5 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

