You are hauling a heavy cart up a $\theta = 30$ deg incline. Luckily, you have been working out so you can apply a force of F = 500 N to the cart. If you apply this force at an angle $\phi = 42$ deg and the cart has a mass of m = 30 kg, what is the acceleration of the cart and the normal force on each of the cart's wheels? The cart has a center of gravity G. The force is applied at a height y = 0.4 m from the ground and G is located at a height y = 0.5 m.

Wheel A is located $x_A = 0.1 m$ from one side of the cart while wheel B is located $x_B = 0.05 m$ from the other end.

Wheel A is a distance $d_A = 0.3 m$ from G while wheel B is a distance $d_B = 0.25 m$.

$$\begin{cases}
F_{x} = m d_{G} & \Rightarrow & -F_{GS} \phi + F_{S} \sin \theta = m d_{G} \\
d_{G} = & -\frac{508N \cos_{3}(42^{\circ}) + (308) (981 \frac{1}{12}) \sin(30^{\circ})}{(308)} \\
d_{G} = & -\frac{7.48 m}{3^{\circ}}
\end{cases}$$

$$\begin{cases}
F_{y} = 0 & \Rightarrow F_{S} \sin \phi - F_{S} \cos \theta + 2N_{B} + 2N_{A} = 0
\end{cases}$$

$$\leq M_A = m d_G d = 0$$
 - $f_S \sin \theta h + f_S \cos \theta d_A ...$
+ $f_S \cos \theta y - f_S \sin \theta (d_A + d_B + x_B)$
- $2 N_B (d_A + d_B) = m d_G h$

- (30%) [9.81 m/s²]
$$\sin 30^\circ$$
 (0.5m) + (30%) [9.81 m/s²) $\cos 30^\circ$ (0.3m)
+ (500N) $\cos 42^\circ$ (0.4m) - (500N) $\sin 42^\circ$ (0.6m) - 2Ng (0.55m)
= (30%) (-7.48 m/s²) (0.5m)