Problem 3

A 5 kg spherical ball with a radius of .05m as shown below is placed on a ramp. If the ball rolls without slipping, what is the velocity of the ball at the bottom of the ramp?

\[W = \Delta KE + \Delta PE \]

\[\mathcal{O} = \frac{1}{2} I \omega^2 + \frac{1}{2} m v_c^2 + my \Delta h \]

Rolling without slipping:

\[v = -r \omega \Rightarrow \omega = \frac{v}{r} \]

\[\mathcal{O} = \frac{1}{2} \left(\frac{2}{5} (Sh_b)(.05m)^2 \right) \left(\frac{-v}{.05} \right)^2 + \frac{1}{2} (Sh_b) V^2 + (Sh_b)(9.81 \frac{m}{s^2})(-.1m) \]

\[Q = V^2 + 2.5 V^2 - 4.905 \]

\[\sqrt{V} = 1.18 \text{ m/s} \]