Consider the uniform thin rod shown with mass $m_{r}=3.3 \mathrm{~kg}$ and angular velocity just after impact from the bullet of $\omega_{2}=12 \mathrm{rad} / \mathrm{s}$. Find the linear momentum and angular momentum about O for the rod. The distance $h=0.6 \mathrm{~m}$ and the total length of the $\operatorname{rod}$ is $=0.8 \mathrm{~m}$.

angular momentum about 0

Just after impact, rod only.
linear momentum
always $\vec{V}_{\text {COG }}$

$$
\vec{J}=m \vec{V}_{G}
$$

kinematics:

$$
\vec{V}_{G}=\vec{X}_{0}^{0}+\vec{\omega}_{2} \times \vec{r}_{G / 0}
$$

$$
\vec{r}_{G / O}=\frac{L}{2}(-\hat{\jmath})
$$

$$
\vec{\omega}_{2}=\omega_{2} \hat{k}
$$

because 0 is a pin

$$
\begin{aligned}
\therefore \vec{K}_{0} & =I_{0} \vec{\omega}_{2} \\
I_{0} & =\frac{1}{3} m L^{2} \\
\vec{K}_{0} & =\frac{1}{3} m L^{2}\left(\omega_{2} \hat{k}\right) \\
& =\frac{1}{3}(3.3 \mathrm{~kg})(0.8 \mathrm{~m})^{2}\left(12 \mathrm{rad} / \mathrm{s}^{\hat{k}}\right) \\
\vec{K}_{0} & =8.45 \frac{\mathrm{Jg}}{\mathrm{~J}} \mathrm{~m}^{2} \hat{\mathrm{~J}}
\end{aligned}
$$

