Problem 2

You are designing a screw lift system that will be used in auto repair shops as shown below. Each screw lift will be required to support loads up to 20kN.

- Assuming a coefficient of friction of .1, what is the lead angle at which the system will be self-locking?
- Assuming a 5cm diameter screw, and an available motor torque of 60Nm, what is the maximum pitch that could be used to lift the 20kN load?

b)
$$T = \frac{s in \theta + M N \cos \theta}{\cos \theta - M N \sin \theta} (F_{load}) (r_{shaft})$$

$$60 \text{ Nm} = \frac{\sin(\theta) + .1\cos(\theta)}{\cos(\theta) - .1\sin(\theta)} \left(20,000 \text{ N} \right) \left(.025 \text{m} \right)$$

$$|\zeta| = \frac{\cos(\theta) + .1\cos(\theta)}{\cos(\theta) - .1\sin(\theta)}$$

$$\frac{.02}{1.012} = \frac{\sin \theta}{\cos \theta} = \tan(\theta)$$

find pitch

$$tan(1.132) = \frac{pitch}{(T)(Sem)}$$
 \longrightarrow $pitch = .31 cm = 3.1 mm$