Question 2:

Assuming a cloverleaf interchange has a radius of curvature of 80 meters at the tightest part of the turn, what is the fastest a car could travel around this curve without experiencing more than $1 / 2$ a g in acceleration? Assume the car is traveling at a constant speed. If the car was instead increasing speed at a rate of $2 \mathrm{~m} / \mathrm{s}^{2}$, what would be the new overall magnitude of the acceleration experienced by the passengers?

1) constant speed

2)

$$
a_{t}=2 \mathrm{~m} / \mathrm{s}^{2} \quad a_{n}=4.905 \mathrm{n} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& a=\sqrt{(2)^{2}+(4.905)^{2}} \\
& a=5.297 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

