A semicircular thin plate has constant density, a radius of 10 cm , and a mass of 400 g . Find the mass moment of inertia of the plate around the axes (a) x^{\prime} and (b) z^{\prime} passing through point A.

SIDE VIEW

Find $I_{x^{\prime} x^{\prime}, A}\left\{I_{z^{\prime} ; \text {, }}\right.$

From previous problem

$$
\begin{aligned}
& I_{Z Z, G}=\frac{1}{2} m r^{2}-m\left(\frac{4 r}{3 \pi}\right)^{2} \\
& I_{X X, G}=\frac{1}{4} m r^{2}-m\left(\frac{4 r}{3 \pi}\right)^{2}
\end{aligned}
$$

Parallel axes:
$I_{x x, 0}$

$$
\begin{aligned}
& I_{2 t, A}=I_{22, G}+m d_{1}{ }^{2} \quad d_{1}{ }^{2}=\left(\frac{4 r}{3 \pi}\right)^{2}+r^{2} \\
& =\frac{1}{2} m r^{2}-m\left(\frac{48}{3 \pi}\right)^{2}+m\left(\frac{4 r}{3 \pi}\right)^{2}+m r^{2} \\
& =\frac{3}{2} m r^{2}=\frac{3}{2}(0.4 \mathrm{~kg})(0.1 m)^{2} \\
& I_{z^{\prime}, A, A}=0.006 \mathrm{~kg}^{\prime} \mathrm{m}^{2} \\
& I_{x^{\prime} x_{1}, A}=I_{x x, G}+m d_{2}^{2} \quad d_{2}^{2}=\left(\frac{4 r}{3 \pi}\right)^{2} \\
& =\frac{1}{4} m r^{2}-m\left(\frac{4 r}{3 \pi}\right)^{2}+m\left(\frac{4 r}{3 \pi}\right)^{2} \\
& \rightarrow=\frac{1}{4} m r^{2}=\frac{1}{4}(0.4 \mathrm{~kg})(0.1 \mathrm{~m})^{2} \\
& I_{x^{\prime} x^{\prime}, A}=0.001 \mathrm{~kg}-\mathrm{m}^{2}
\end{aligned}
$$

