A sign is made from 3 circles of aluminum of thickness 1 cm and density $2.7 \mathrm{~g} / \mathrm{cm}^{3}$. The smaller circles (radius 2 m) are joined to the larger circle (radius 3 m) where they overlap. Find the centre of mass of the sign with respect to the centre of the largest circle. Also find the moment of inertia of the sign about the axis passing through the centre of mass and perpendicular to the plane of the sign.

Find $\left(x_{G}, y_{G}\right)$ Find $I_{C O G}$
COG
by symmetry, $x_{G}=0$

$$
y_{G}=y_{1} m_{1}+2\left(y_{2} m_{2}\right)
$$

$$
=\frac{\ell^{K}\left(y_{1} A_{1}+2 y_{2} A_{2}\right)}{\ell^{K} A_{T \pi}}
$$

$$
=\frac{y_{1}\left(\pi r_{1}^{2}\right)+2 y_{2}\left(\pi r_{2}^{2}\right)}{\left(\pi r_{1}^{2}+2 \pi r_{2}^{2}\right)}
$$

$$
=\frac{0(3 m)^{2}+2(3 m)(2 m)^{2}}{(3 m)^{2}+2(2 m)^{2}}
$$

$$
=\frac{24}{17} \frac{m^{6}}{n^{2}}
$$

$$
\begin{aligned}
& x_{G}=0 \\
& y_{G}=1.4 \mathrm{~m}
\end{aligned}
$$

MMOI@COG"O"
(1) about own COG:

$$
I_{z 2,1}=\frac{1}{2} m_{1} r_{1}^{2}
$$

about 0 :

$$
I_{2 \pi, 1,0}^{a b o u t ~ 0: ~} I_{2 z, 1}+m_{1} d_{1}^{2}
$$

$$
m_{1}=\rho \pi r_{1}^{2} t
$$

(2) about own COG:

$$
I_{22,2}=\frac{1}{2} m_{2} r_{2}^{2}
$$

$$
\begin{aligned}
& d_{2}^{2}=(1.6 m)^{2}+(3 m)^{2} \\
& m_{2}=\rho \pi r_{2}^{2} t
\end{aligned}
$$

about 0 :

$$
\begin{aligned}
& \text { about 0: } \\
& I_{22,2,0}=I_{22,2}+m_{2} d_{2}^{2}
\end{aligned}
$$

(3) $I_{22,3,0}=I_{22,2,0}$

MMO1 total object:

$$
I_{2 z, \text { tot }}=I_{22,1,0}+2\left(I_{22,2,0}\right)
$$

$$
=\frac{1}{2} m_{1} r_{1}^{2}+2 F\left(\frac{1}{7} m_{2} r_{2}^{2}\right)+m_{1} d_{1}^{2}+2 m_{2} d_{2}^{2}
$$

$$
=\rho \pi t\left[\frac{1}{2} r_{1}^{4}+r_{2}^{4}+r_{1}^{2} d_{1}^{2}+2 r_{2}^{2} d_{2}^{2}\right]
$$

$$
\begin{aligned}
& =\rho \pi t\left[\frac{1}{2} r_{1}^{4}+r_{2}^{4}+r_{1}^{2} d_{1}^{2}+2 r_{2} d_{2}\right] \\
& =\rho \pi t\left[\frac{1}{2}(3 m)^{4}+(2 m)^{4}+(3 m)^{2}(1.4 m)^{2}+2(2 m)^{2}\left[(1.6 m)^{2}+(3 m)^{2}\right]\right] \\
& \hline 10.76)(3.14)(1 \mathrm{cmn}) \cdot\left(\frac{(100 \mathrm{~cm})^{2}}{1 m^{2}} \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~d}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\rho \pi t\left[\frac{1}{2}(3 m)^{4}+(2 m)+\left(3 m m^{4}\right)=\left(\frac{2.7 \phi}{6 m 62}\right)(3.14)(1 \mathrm{~cm}) \cdot\left(\frac{100 \mathrm{~cm})^{2}}{1 \mathrm{~m}^{2}} \cdot \frac{1 \mathrm{~kg}}{1000 g}\right.\right. \\
& =\rho \pi t\left(166.62 \mathrm{~m}^{4}\right) \\
& \times\left(166.62 \mathrm{~m}^{4}\right)
\end{aligned}
$$

$$
\times\left(166.62 \mathrm{~m}^{4}\right)
$$

$$
\begin{aligned}
& I_{2 a, \text { tot }}=14,126 \mathrm{~kg}-\mathrm{m}^{2} \\
& \text { about }
\end{aligned}
$$

$$
0
$$

